论文标题
关于经典离散正交多项式的零的变化
On variation of zeros of classical discrete orthogonal polynomials
论文作者
论文摘要
本说明的目的是从Nikiforov和Uvarov引入的超几何型差方程来建立,这是针对经典离散正交多物质的真实参数的新型拖延的足够条件。该结果使人们可以对线性,二次,Q线性和Q-质量网格的经典正交多项式的零的单调性进行系统研究。特别是,我们以简单而统一的方式分析了Hahn,Charlier,Krawtchouk,Meixner,Racah,Dual Hahn,Q-Meixner,Quntum Q-Krawtchouk,Q-Krawtchouk,Affine q-Krawtchouk,Q-Krawtchouk,q-krawtchouk,q-krawtchouk,q-charlier,q-charlier,q-charlier,q-krah n salam-carlier, Q-JACOBI,LITTLE Q-LAGUERE/WALL,Q-BESSEL,Q-RACAH和双Q-HAHN多项式。
The purpose of this note is to establish, from the hypergeometric-type difference equation introduced by Nikiforov and Uvarov, new tractable sufficient conditions for the monotonicity with respect to a real parameter of zeros of classical discrete orthogonal polynomials. This result allows one to carry out a systematic study of the monotonicity of zeros of classical orthogonal polynomials on linear, quadratic, q-linear, and q-quadratic grids. In particular, we analyze in a simple and unified way the monotonicity of the zeros of Hahn, Charlier, Krawtchouk, Meixner, Racah, dual Hahn, q-Meixner, quantum q-Krawtchouk, q-Krawtchouk, affine q-Krawtchouk, q-Charlier, Al-Salam-Carlitz, q-Hahn, little q-Jacobi, little q-Laguerre/Wall, q-Bessel, q-Racah and dual q-Hahn polynomials.