论文标题
任何有限等级的一类单方语言的完整$ω$ - 单方面语言的能力
Some complete $ω$-powers of a one-counter language, for any Borel class of finite rank
论文作者
论文摘要
我们证明,对于任何自然数字n $ \ ge $ 1,我们可以找到有限的字母$σ$和一个由$σ$ a $σ$的限制性语言,因此,$ω$ -popper l $ \ infty $:= {w 0 w 0 w 1。.. $ \ forall $ i $ \ in $ $ $ω$ w i $ \ in $ l}是$π$ 0 n-commerte。我们证明了$σ$ 0 n的类似结果。
We prove that, for any natural number n $\ge$ 1, we can find a finite alphabet $Σ$ and a finitary language L over $Σ$ accepted by a one-counter automaton, such that the $ω$-power L $\infty$ := {w 0 w 1. .. $\in$ $Σ$ $ω$ | $\forall$i $\in$ $ω$ w i $\in$ L} is $Π$ 0 n-complete. We prove a similar result for the class $Σ$ 0 n .