论文标题

扭曲高斯流程受限优化的强大方法

A robust approach to warped Gaussian process-constrained optimization

论文作者

Wiebe, Johannes, Cecílio, Inês, Dunlop, Jonathan, Misener, Ruth

论文摘要

最近在贝叶斯优化设置中考虑了由扭曲的高斯工艺建模的不确定黑盒约束的优化问题。这项工作介绍了一类新的约束,其中相同的黑框函数在不同域点进行了多次进行。这种限制在应用程序(例如,安全至关重要的措施在多个时间段内汇总)的应用中很重要。我们使用强大优化的方法将这些不确定的约束重新定义为确保对指定概率(即对机会约束的确定性近似值)满意的确定性约束。这种方法将强大的优化方法从参数不确定性扩展到由扭曲的高斯过程建模的不确定功能。我们分析了凸条件,并针对非凸病例提出了自定义的全球优化策略。从生产计划中得出的一个案例研究和石油井钻探与工业相关的例子表明,该方法有效地减轻了学习曲线的不确定性。在钻探计划示例中,我们制定了一种自定义策略,用于全球优化整数决策。

Optimization problems with uncertain black-box constraints, modeled by warped Gaussian processes, have recently been considered in the Bayesian optimization setting. This work introduces a new class of constraints in which the same black-box function occurs multiple times evaluated at different domain points. Such constraints are important in applications where, e.g., safety-critical measures are aggregated over multiple time periods. Our approach, which uses robust optimization, reformulates these uncertain constraints into deterministic constraints guaranteed to be satisfied with a specified probability, i.e., deterministic approximations to a chance constraint. This approach extends robust optimization methods from parametric uncertainty to uncertain functions modeled by warped Gaussian processes. We analyze convexity conditions and propose a custom global optimization strategy for non-convex cases. A case study derived from production planning and an industrially relevant example from oil well drilling show that the approach effectively mitigates uncertainty in the learned curves. For the drill scheduling example, we develop a custom strategy for globally optimizing integer decisions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源