论文标题
标记的数据分类的稳健的局部感知回归
Robust Locality-Aware Regression for Labeled Data Classification
论文作者
论文摘要
随着数据表示中尺寸的急剧增加,提取潜在的低维特征成为有效分类至关重要的。针对不清楚的边缘表示的问题和在大多数现有的线性判别方法中揭示数据歧管结构的难度,我们提出了一个新的判别特征提取框架,即稳健的局部感知回归(RLAR)。在我们的模型中,我们引入了一个重新定位的回归,以自适应地进行边际表示学习,而不是使用一般平均水平间边缘。此外,我们制定了一种新的策略来增强数据歧管的局部类内紧凑性,该策略可以实现局部感知的图形结构和理想的投影矩阵的联合学习。为了减轻异常值的干扰并防止过度拟合,我们测量了回归项和局部感知的术语以及L2,1规范的正则化项。此外,通过L2,1规范迫使投影矩阵上的行稀疏性达到了特征选择和特征提取的合作。然后,我们得出了一种有效的迭代算法来解决所提出的模型。在一系列UCI数据集和其他基准数据库中的实验结果表明,所提出的RLAR优于某些最新方法。
With the dramatic increase of dimensions in the data representation, extracting latent low-dimensional features becomes of the utmost importance for efficient classification. Aiming at the problems of unclear margin representation and difficulty in revealing the data manifold structure in most of the existing linear discriminant methods, we propose a new discriminant feature extraction framework, namely Robust Locality-Aware Regression (RLAR). In our model, we introduce a retargeted regression to perform the marginal representation learning adaptively instead of using the general average inter-class margin. Besides, we formulate a new strategy for enhancing the local intra-class compactness of the data manifold, which can achieve the joint learning of locality-aware graph structure and desirable projection matrix. To alleviate the disturbance of outliers and prevent overfitting, we measure the regression term and locality-aware term together with the regularization term by the L2,1 norm. Further, forcing the row sparsity on the projection matrix through the L2,1 norm achieves the cooperation of feature selection and feature extraction. Then, we derive an effective iterative algorithm for solving the proposed model. The experimental results over a range of UCI data sets and other benchmark databases demonstrate that the proposed RLAR outperforms some state-of-the-art approaches.