论文标题
凯勒(Keller)中的流动波的确切最小速度
Exact minimum speed of traveling waves in a Keller--Segel model
论文作者
论文摘要
在本文中,我们提出了一个凯勒 - 鉴定模型,其在趋化模式形成的研究中产生了逻辑生长动力学。我们证明了最小波速的存在,该模型以高于此值的所有速度表现出非负行动波解决方案,而在下面则没有。对于所有生物学相关的参数值,给出了最小波速的确切值。这些结果加强了最近的结果,其中最小波速上的非相关上限和下限以限制参数制度得出。
In this paper we present a Keller--Segel model with logistic growth dynamics arising in the study of chemotactic pattern formation. We prove the existence of a minimum wave speed for which the model exhibits nonnegative travelling wave solutions at all speeds above this value and none below. The exact value of the minimum wave speed is given for all biologically relevant parameter values. These results strengthen recent results where non-sharp upper and lower bounds on the minimum wave speed were derived in a restricted parameter regime.