论文标题
等离子驱动的热电子在原子上尖锐的金属 - 塞纳米结合
Plasmon-Driven Hot Electron Transfer at Atomically Sharp Metal-Semiconductor Nanojunctions
论文作者
论文摘要
在纳米级引导和定位光线的最新进展暴露了超级等离子设备的巨大潜力。在这种情况下,表面等离子体对热载体的衰减触发了各种应用,以提高能量收获,光催化和光检测的效率。然而,对等离子体热载体的产生,尤其是在金属 - 触发器界面的转移仍然难以捉摸的详细了解仍然难以捉摸。在本文中,我们引入了一个整体金属 - 官方导体(AL-GE)异质结构设备,提供了一个平台来检查表面等离子体衰减和热电子传递,以原子上尖锐的Schottky纳米结。封闭式金属 - 官方导体的异质结装置具有雪花板屏障高度在Al-GE界面处的静电控制,从而实现了热电子滤波。通过控制GE中的频带间电子传递,可以证明动量匹配和控制等离子驱动热电子注入的能量分布的能力。
Recent advances in guiding and localizing light at the nanoscale exposed the enormous potential of ultra-scaled plasmonic devices. In this context, the decay of surface plasmons to hot carriers triggers a variety of applications in boosting the efficiency of energy-harvesting, photo-catalysis and photo-detection. However, a detailed understanding of plasmonic hot carrier generation and particularly the transfer at metal-semiconductor interfaces is still elusive. In this paper, we introduce a monolithic metal-semiconductor (Al-Ge) heterostructure device, providing a platform to examine surface plasmon decay and hot electron transfer at an atomically sharp Schottky nanojunction. The gated metal-semiconductor heterojunction device features electrostatic control of the Schottky barrier height at the Al-Ge interface, enabling hot electron filtering. The ability of momentum matching and to control the energy distribution of plasmon-driven hot electron injection is demonstrated by controlling the interband electron transfer in Ge leading to negative differential resistance.