论文标题

Cytopt:最佳传输,具有用于解释流式细胞术数据的域适应性

CytOpT: Optimal Transport with Domain Adaptation for Interpreting Flow Cytometry data

论文作者

Freulon, Paul, Bigot, Jérémie, Hejblum, Boris P.

论文摘要

流式细胞仪测量的自动分析是一个主动研究领域。我们采用正则化最佳运输引入了一种新算法,称为cytopt,直接估算出具有流式细胞仪测量的生物样品的不同细胞种群比例。我们依靠正规化的瓦斯汀度量标准比较来自不同样品的细胞仪测量值,从而解决了在样品跨样品中可能对给定细胞种群的错误对准(由于测量技术的技术变异性)。在这项工作中,我们依靠基于Wasserstein度量的监督学习技术,该技术用于估算从源分布中的混合模型中对类比例的最佳重新加权(已知的分割到细胞子群中),以拟合具有未知分段的目标分布。由于流式细胞仪数据的高度维度,我们使用随机算法近似正规化的WASSERSTEIN度量,以解决代表目标分布中细胞种群比例的最佳权重估计的优化问题。几个流式细胞仪数据集用于说明Cytopt的性能,这些性能也与基于监督学习的现有算法进行了比较。

The automated analysis of flow cytometry measurements is an active research field. We introduce a new algorithm, referred to as CytOpT, using regularized optimal transport to directly estimate the different cell population proportions from a biological sample characterized with flow cytometry measurements. We rely on the regularized Wasserstein metric to compare cytometry measurements from different samples, thus accounting for possible mis-alignment of a given cell population across sample (due to technical variability from the technology of measurements). In this work, we rely on a supervised learning technique based on the Wasserstein metric that is used to estimate an optimal re-weighting of class proportions in a mixture model from a source distribution (with known segmentation into cell sub-populations) to fit a target distribution with unknown segmentation. Due to the high-dimensionality of flow cytometry data, we use stochastic algorithms to approximate the regularized Wasserstein metric to solve the optimization problem involved in the estimation of optimal weights representing the cell population proportions in the target distribution. Several flow cytometry data sets are used to illustrate the performances of CytOpT that are also compared to those of existing algorithms for automatic gating based on supervised learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源