论文标题
富含子电池的盖金方法用于对流问题
A subcell-enriched Galerkin method for advection problems
论文作者
论文摘要
在这项工作中,我们引入了富集的盖尔金(EG)方法的概括。我们方案的关键特征是一种自适应的两层方法,除了通过不连续的自由度符合有限元离散化的标准富集外,还允许以不符合性的方式对选择(例如,陷入困境的)网细胞进行细分,并在此Finer TristeSh上使用进一步的不连续性。我们证明了通过使用特殊量身定制的投影并对两个网格进行标准收敛分析的某些部分,证明了线性对流方程的先验误差估计。通过允许对粗网和细网格的任意程度的富集(还包括无富集的情况),我们的分析技术非常笼统,因为我们的结果涵盖了从标准的连续有限元方法到具有(或不使用)局部子细胞富集的标准连续有限元方法到标准不连续的Galerkin(DG)方法。数值实验证实了我们的分析结果,并表明了所提出的方法的良好鲁棒性。
In this work, we introduce a generalization of the enriched Galerkin (EG) method. The key feature of our scheme is an adaptive two-mesh approach that, in addition to the standard enrichment of a conforming finite element discretization via discontinuous degrees of freedom, allows to subdivide selected (e.g. troubled) mesh cells in a non-conforming fashion and to use further discontinuous enrichment on this finer submesh. We prove stability and sharp a priori error estimates for a linear advection equation by using a specially tailored projection and conducting some parts of a standard convergence analysis for both meshes. By allowing an arbitrary degree of enrichment on both, the coarse and the fine mesh (also including the case of no enrichment), our analysis technique is very general in the sense that our results cover the range from the standard continuous finite element method to the standard discontinuous Galerkin (DG) method with (or without) local subcell enrichment. Numerical experiments confirm our analytical results and indicate good robustness of the proposed method.