论文标题
出生式理论中的常驻波解决方案
Standing wave solutions in Born-Infeld theory
论文作者
论文摘要
我们研究了出生的污染电动力学的站立溶液,在两个平行导电板之间的区域中具有非零电磁场。我们认为,当描述电磁场的矢量电势的最简单情况下,根据时间和垂直于板的坐标,仅具有一个非零组分。然后,该问题减少了求解标量出生式进程方程,这是1+1维中的非线性偏微分方程。我们采用两种替代方法来获取出生的污染方程:一种迭代方法和``最小表面''方法。我们还研究了在均匀的恒定磁场背景下的常驻波解决方案。
We study standing-wave solutions of Born-Infeld electrodynamics, with nonzero electromagnetic field in a region between two parallel conducting plates. We consider the simplest case which occurs when the vector potential describing the electromagnetic field has only one nonzero component depending on time and on the coordinate perpendicular to the plates. The problem then reduces to solving the scalar Born-Infeld equation, a nonlinear partial differential equation in 1+1 dimensions. We apply two alternative methods to obtain standing-wave solutions to the Born-Infeld equation: an iterative method, and a ``minimal surface'' method. We also study standing wave solutions in a uniform constant magnetic field background.