论文标题
球形CR表示中三角群的冗余
Redundancy of triangle groups in spherical CR representations
论文作者
论文摘要
Falbel,Koseleff和Rouillier计算了非紧凑型三个manifolds的基本组的大量边界单位CR表示。这些表示并不总是离散的。通过实验计算其极限集,可以确定那些具有分形极限集的人是离散的。这些离散表示中的许多可能与(3,3,N)复杂双曲三角形组有关。通过精确的计算,我们验证了具有边界单位载体的那些三角形表示的存在。我们还表明,许多表示形式是多余的:对于n固定,遇到的所有(3,3,n)表示都是共轭的,其中只有一个是均匀的。
Falbel, Koseleff and Rouillier computed a large number of boundary unipotent CR representations of fundamental groups of non compact three-manifolds. Those representations are not always discrete. By experimentally computing their limit set, one can determine that those with fractal limit sets are discrete. Many of those discrete representations can be related to (3,3,n) complex hyperbolic triangle groups. By exact computations, we verify the existence of those triangle representations, which have boundary unipotent holonomy. We also show that many representations are redundant: for n fixed, all the (3,3,n) representations encountered are conjugate and only one among them is uniformizable.