论文标题
在血管内干预期间,端到端的实时导管分割,并带有光流引导翘曲
End-to-End Real-time Catheter Segmentation with Optical Flow-Guided Warping during Endovascular Intervention
论文作者
论文摘要
准确的实时导管分割是机器人辅助血管内干预的重要前提条件。由于地面真相注释的困难,大多数现有基于学习的导管分割和跟踪方法仅在小规模数据集或合成数据上训练。此外,术中成像序列中的时间连续性尚未得到充分利用。在本文中,我们提出了FW-NET,这是一个用于血管内干预的端到端和实时深度学习框架。所提出的FW-NET具有三个模块:具有编码器架构的分割网络,一个用于提取光流信息的流网络以及一种新颖的流引导的翘曲功能,以了解框架到框架的时间连续性。我们表明,通过有效学习时间连续性,网络可以仅使用原始地面真相进行实时序列成功细分和跟踪导管。详细的验证结果证实,我们的FW-NET在实现实时性能的同时优于最先进的技术。
Accurate real-time catheter segmentation is an important pre-requisite for robot-assisted endovascular intervention. Most of the existing learning-based methods for catheter segmentation and tracking are only trained on small-scale datasets or synthetic data due to the difficulties of ground-truth annotation. Furthermore, the temporal continuity in intraoperative imaging sequences is not fully utilised. In this paper, we present FW-Net, an end-to-end and real-time deep learning framework for endovascular intervention. The proposed FW-Net has three modules: a segmentation network with encoder-decoder architecture, a flow network to extract optical flow information, and a novel flow-guided warping function to learn the frame-to-frame temporal continuity. We show that by effectively learning temporal continuity, the network can successfully segment and track the catheters in real-time sequences using only raw ground-truth for training. Detailed validation results confirm that our FW-Net outperforms state-of-the-art techniques while achieving real-time performance.