论文标题

通过深度学习绘制光子拓扑状态的设计空间

Mapping the Design Space of Photonic Topological States via Deep Learning

论文作者

Singh, Robin, Agarwal, Anuradha Murthy, Anthony, Brian W

论文摘要

光子学中的拓扑状态提供了指导和操纵光子的新型前景,并促进了为各种应用的现代光学组件的开发。在过去的几年中,光子拓扑物理学在这些拓扑材料(例如硅光子晶体)中发展并揭示了各种非常规的光学特性。但是,这种拓扑状态的设计仍然带来重大挑战。常规的优化方案通常无法捕获其复杂的高维设计空间。在此手稿中,我们开发了一个深度学习框架,以绘制光子晶体中拓扑状态的设计空间。该框架克服了现有深度学习实现的局限性。具体而言,它可以协调输入(拓扑属性)与输出(设计参数)向量空间之间的尺寸不匹配,以及由一到一定的函数映射引起的非唯一性。我们为正向模型使用完全连接的深神经网络(DNN)体系结构,并为逆模型使用环状卷积神经网络(CCNN)。逆架构包含串联的预训练的前向模型,从而大大降低了预测误差。

Topological states in photonics offer novel prospects for guiding and manipulating photons and facilitate the development of modern optical components for a variety of applications. Over the past few years, photonic topology physics has evolved and unveiled various unconventional optical properties in these topological materials, such as silicon photonic crystals. However, the design of such topological states still poses a significant challenge. Conventional optimization schemes often fail to capture their complex high dimensional design space. In this manuscript, we develop a deep learning framework to map the design space of topological states in the photonic crystals. This framework overcomes the limitations of existing deep learning implementations. Specifically, it reconciles the dimension mismatch between the input (topological properties) and output (design parameters) vector spaces and the non-uniqueness that arises from one-to-many function mappings. We use a fully connected deep neural network (DNN) architecture for the forward model and a cyclic convolutional neural network (cCNN)for the inverse model. The inverse architecture contains the pre-trained forward model in tandem, thereby reducing the prediction error significantly.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源