论文标题
重建具有深层生成模型的湍流数据,用于从涡轮 - 罗特数据库中进行语义介绍
Reconstruction of turbulent data with deep generative models for semantic inpainting from TURB-Rot database
论文作者
论文摘要
我们研究了由计算机视觉社区开发的工具的适用性,用于学习和语义图像介绍以执行流体湍流配置的数据重建。目标是双重的。首先,我们以定量的基础进行探索,即嵌入深层生成对抗模型(Deep-GAN)中的卷积神经网络的能力,以在湍流中产生缺失的数据,这是一种范式的高度混乱系统。特别是,我们研究了它们在重建二维损坏的快照中的用途,这些快照是从旋转存在的大型数值配置数据库中提取的,该数据库具有多尺度随机特征,其中大规模有组织的结构和小规模的高度间歇性和非高度层次和非雅纳斯的波动都存在。其次,按照逆向工程方法,我们旨在根据其定性和定量重要性对输入流属性(功能)进行排名,以获得更好的重建字段。我们根据上下文编码提供两种方法。第一个通过最小化L2像素的重建损失以及对较小的对抗性罚款,从而渗透了丢失的数据。第二个搜索从先前训练的发电机中搜索损坏的流程配置的最接近编码。最后,我们与不同的数据同化工具进行了比较,该工具基于nuding,这是一个方程式无偏见的协议,在数值天气预测界众所周知。发行了大约300K 2D湍流图像的涡轮手数据库,http://smart-turb.roma2.infn.it,并提供了有关如何下载它的详细信息。
We study the applicability of tools developed by the computer vision community for features learning and semantic image inpainting to perform data reconstruction of fluid turbulence configurations. The aim is twofold. First, we explore on a quantitative basis, the capability of Convolutional Neural Networks embedded in a Deep Generative Adversarial Model (Deep-GAN) to generate missing data in turbulence, a paradigmatic high dimensional chaotic system. In particular, we investigate their use in reconstructing two-dimensional damaged snapshots extracted from a large database of numerical configurations of 3d turbulence in the presence of rotation, a case with multi-scale random features where both large-scale organised structures and small-scale highly intermittent and non-Gaussian fluctuations are present. Second, following a reverse engineering approach, we aim to rank the input flow properties (features) in terms of their qualitative and quantitative importance to obtain a better set of reconstructed fields. We present two approaches both based on Context Encoders. The first one infers the missing data via a minimization of the L2 pixel-wise reconstruction loss, plus a small adversarial penalisation. The second searches for the closest encoding of the corrupted flow configuration from a previously trained generator. Finally, we present a comparison with a different data assimilation tool, based on Nudging, an equation-informed unbiased protocol, well known in the numerical weather prediction community. The TURB-Rot database, http://smart-turb.roma2.infn.it, of roughly 300K 2d turbulent images is released and details on how to download it are given.