论文标题

通过深度度量学习对单个荷斯坦 - 弗里斯牛的视觉识别

Visual Identification of Individual Holstein-Friesian Cattle via Deep Metric Learning

论文作者

Andrew, William, Gao, Jing, Mullan, Siobhan, Campbell, Neill, Dowsey, Andrew W, Burghardt, Tilo

论文摘要

荷斯坦 - 弗里斯牛在视觉上表现出单独特征的黑色和白色外套图案,类似于图灵的反应扩散系统产生的黑色和白色外套。这项工作利用了这些自然标记,以通过卷积神经网络和深度度量学习技术来自动化单个荷斯坦 - 弗里斯人的视觉检测和生物识别识别。现有方法依赖于具有多种维护要求的标记,标签或可穿戴设备,而我们为在开放的牛群环境中从架空成像中对自动检测,定位和识别单个动物的识别提供了一种完全的方法,即在不重新培训的情况下确定了对群群的新增加。我们建议使用基于软疗法的互惠三胞胎损失来解决识别问题,并针对固定的牛群范式进行详细评估技术。我们发现,即使在系统培训期间,许多牛在系统训练中看不见的牛都会表现出很强的表现,即使在仅一半的人群中进行训练时,才能达到93.8%的准确性。这项工作为促进适用于精确农业和监视的牛的非侵入性监测铺平了道路,以实现自动化生产力,健康和福利监测,以及兽医研究,例如行为分析,疾病爆发追踪等。源代码,网络权重和数据集的关键部分可公开可用。

Holstein-Friesian cattle exhibit individually-characteristic black and white coat patterns visually akin to those arising from Turing's reaction-diffusion systems. This work takes advantage of these natural markings in order to automate visual detection and biometric identification of individual Holstein-Friesians via convolutional neural networks and deep metric learning techniques. Existing approaches rely on markings, tags or wearables with a variety of maintenance requirements, whereas we present a totally hands-off method for the automated detection, localisation, and identification of individual animals from overhead imaging in an open herd setting, i.e. where new additions to the herd are identified without re-training. We propose the use of SoftMax-based reciprocal triplet loss to address the identification problem and evaluate the techniques in detail against fixed herd paradigms. We find that deep metric learning systems show strong performance even when many cattle unseen during system training are to be identified and re-identified -- achieving 93.8% accuracy when trained on just half of the population. This work paves the way for facilitating the non-intrusive monitoring of cattle applicable to precision farming and surveillance for automated productivity, health and welfare monitoring, and to veterinary research such as behavioural analysis, disease outbreak tracing, and more. Key parts of the source code, network weights and datasets are available publicly.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源