论文标题

等距自动编码器

Isometric Autoencoders

论文作者

Gropp, Amos, Atzmon, Matan, Lipman, Yaron

论文摘要

高维数据通常被认为集中在低维歧管上或附近。自动编码器(AE)是一种流行的技术,可以通过通过具有低维瓶颈的神经网络将其推动,同时最大程度地减少重建误差,从而学习此类数据的表示。使用高容量AE通常会导致大量的最小化器,其中许多代表了较低的尺寸歧管,该歧管非常适合数据,但概括性较差。 不良概括的两个来源是:外部概括,那里学到的歧管具有远离数据的外部部分。和内在的,其中编码器和解码器在低维参数化中引入任意失真。一种减轻这些问题的方法是添加有利于特定解决方案的正规器。共同的正规化器会促进稀疏性,小衍生物或噪声的鲁棒性。 在本文中,我们主张一个等轴测法(即保留局部距离)正常器。具体而言,我们的正常化器鼓励:(i)解码器是轴测; (ii)编码器是解码器的伪内,即编码器通过正交投影将解码器的倒数扩展到环境空间。简而言之,(i)和(ii)固定自由度的固有和外在度,并对主成分分析(PCA)提供了非线性的概括。在降低降低任务上使用等轴测规则实验会产生有用的低维数据表示。

High dimensional data is often assumed to be concentrated on or near a low-dimensional manifold. Autoencoders (AE) is a popular technique to learn representations of such data by pushing it through a neural network with a low dimension bottleneck while minimizing a reconstruction error. Using high capacity AE often leads to a large collection of minimizers, many of which represent a low dimensional manifold that fits the data well but generalizes poorly. Two sources of bad generalization are: extrinsic, where the learned manifold possesses extraneous parts that are far from the data; and intrinsic, where the encoder and decoder introduce arbitrary distortion in the low dimensional parameterization. An approach taken to alleviate these issues is to add a regularizer that favors a particular solution; common regularizers promote sparsity, small derivatives, or robustness to noise. In this paper, we advocate an isometry (i.e., local distance preserving) regularizer. Specifically, our regularizer encourages: (i) the decoder to be an isometry; and (ii) the encoder to be the decoder's pseudo-inverse, that is, the encoder extends the inverse of the decoder to the ambient space by orthogonal projection. In a nutshell, (i) and (ii) fix both intrinsic and extrinsic degrees of freedom and provide a non-linear generalization to principal component analysis (PCA). Experimenting with the isometry regularizer on dimensionality reduction tasks produces useful low-dimensional data representations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源