论文标题
Steklov特征值问题的虚拟元素方法允许小边缘
A virtual element method for the Steklov eigenvalue problem allowing small edges
论文作者
论文摘要
本文的目的是通过最低阶的虚拟元素方法分析小边的影响在Steklov特征值问题的频谱中的影响。在多边形网格上的较弱的假设下,可以允许与元素直径有关的任意边缘,我们表明该方案提供了频谱的正确近似值,并证明了特征功能的最佳误差估计值和特征值的双重顺序。最后,我们报告了一些支持理论结果的数值测试。
The aim of this paper is to analyze the influence of small edges in the computation of the spectrum of the Steklov eigenvalue problem by a lowest order virtual element method. Under weaker assumptions on the polygonal meshes, which can permit arbitrarily small edges with respect to the element diameter, we show that the scheme provides a correct approximation of the spectrum and prove optimal error estimates for the eigenfunctions and a double order for the eigenvalues. Finally, we report some numerical tests supporting the theoretical results.