论文标题

人重新识别的跨关注注意力网络

Cross-Correlated Attention Networks for Person Re-Identification

论文作者

Zhou, Jieming, Roy, Soumava Kumar, Fang, Pengfei, Harandi, Mehrtash, Petersson, Lars

论文摘要

深度神经网络需要在遮挡,背景混乱,姿势和观点变化的存在下进行鲁棒的推断 - 在考虑人员重新识别的任务时。最近,注意机制已被证明在某种程度上可以成功处理上述挑战。但是,以前的设计未能捕获所在特征之间的固有相互依存。导致注意力块之间的相互作用受到限制。在本文中,我们提出了一个新的注意力模块,称为交叉关注(CCA)。旨在通过最大化不同参加区域之间的信息增益来克服此类局限性。此外,我们还提出了一个新颖的深层网络,该网络利用不同的注意机制来学习人图像的稳健和歧视性表示。所得模型称为交叉相关的注意网络(CCAN)。广泛的实验表明,CCAN可以通过切实的边距舒适地胜过当前最新算法。

Deep neural networks need to make robust inference in the presence of occlusion, background clutter, pose and viewpoint variations -- to name a few -- when the task of person re-identification is considered. Attention mechanisms have recently proven to be successful in handling the aforementioned challenges to some degree. However previous designs fail to capture inherent inter-dependencies between the attended features; leading to restricted interactions between the attention blocks. In this paper, we propose a new attention module called Cross-Correlated Attention (CCA); which aims to overcome such limitations by maximizing the information gain between different attended regions. Moreover, we also propose a novel deep network that makes use of different attention mechanisms to learn robust and discriminative representations of person images. The resulting model is called the Cross-Correlated Attention Network (CCAN). Extensive experiments demonstrate that the CCAN comfortably outperforms current state-of-the-art algorithms by a tangible margin.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源