论文标题

通过扭曲

Topological Gaps by Twisting

论文作者

Rosa, Matheus, Ruzzene, Massimo, Prodan, Emil

论文摘要

结果表明,扭曲的$ n $层级具有固有的自由度,生活在$ 2N $ -TORI上,这是由层的相对滑块提供的Phason,并且扭曲会产生伪磁场。结果,扭曲的$ n $ slayers构成了内在的更高维拓扑阶段,而以第二个Chern数字为特征的阶段可以在扭曲的双层层中找到。实际上,我们对通过第二个扭曲晶格调节的相互作用的语音晶格进行了调查,揭示了霍夫史塔特样光谱蝴蝶的扭曲角度,其间隙带有预测的拓扑不变性。我们的工作表明了多层系统如何是研究较高维量子霍尔效应物理学的虚拟实验室,以及如何通过简单地相对于彼此滑动层来生成拓扑边缘手性模式。在光子和声音的经典超材料的背景下,这些发现为通过简单的扭曲和滑动开辟了工程拓扑泵送的道路。

It is shown that twisted $n$-layers have an intrinsic degree of freedom living on $2n$-tori, which is the phason supplied by the relative slidings of the layers and that the twist generates pseudo magnetic fields. As a result, twisted $n$-layers host intrinsic higher dimensional topological phases and those characterized by second Chern numbers can be found in a twisted bi-layer. Indeed, our investigation of phononic lattices with interactions modulated by a second twisted lattice reveals Hofstadter-like spectral butterflies in terms of the twist angle, whose gaps carry the predicted topological invariants. Our work demonstrates how multi-layered systems are virtual laboratories for studying the physics of higher dimensional quantum Hall effect and how to generate topological edge chiral modes by simply sliding the layers relative to each other. In the context of classical metamaterials, both photonic and phononic, these findings open a path to engineering topological pumping via simple twisting and sliding.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源