论文标题

HYNET:以混合相似性度量和三重损失学习本地描述符

HyNet: Learning Local Descriptor with Hybrid Similarity Measure and Triplet Loss

论文作者

Tian, Yurun, Barroso-Laguna, Axel, Ng, Tony, Balntas, Vassileios, Mikolajczyk, Krystian

论文摘要

最近的作品表明,局部描述符的学习受益于L2归一化的使用,但是,对这种效果的深入分析缺乏文献。在本文中,我们研究了L2归一化如何影响训练过程中的后传达描述梯度。根据我们的观察,我们提出了HYNET,这是一种新的本地描述符,导致最新的匹配结果。 HYNET引入了三胞胎余量损失的混合相似性度量,一个正规化项来约束描述符规范,以及对所有中间特征映射和输出描述符的L2归一化的新网络体系结构。 HYNET在标准基准上的大幅度超过了先前的方法,包括补丁匹配,验证和检索,并且在3D重建任务上的表现优于完整的端到端方法。

Recent works show that local descriptor learning benefits from the use of L2 normalisation, however, an in-depth analysis of this effect lacks in the literature. In this paper, we investigate how L2 normalisation affects the back-propagated descriptor gradients during training. Based on our observations, we propose HyNet, a new local descriptor that leads to state-of-the-art results in matching. HyNet introduces a hybrid similarity measure for triplet margin loss, a regularisation term constraining the descriptor norm, and a new network architecture that performs L2 normalisation of all intermediate feature maps and the output descriptors. HyNet surpasses previous methods by a significant margin on standard benchmarks that include patch matching, verification, and retrieval, as well as outperforming full end-to-end methods on 3D reconstruction tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源