论文标题
计算标准的年轻tableaux和限制性运行
Counting Standard Young Tableaux With Restricted Runs
论文作者
论文摘要
n矩形的形状为K的年轻tableaux数量是著名的(NK)! 0! ...(k-1)!/((n+k-1)!(n+k-2)!... n!),暗示对于每个特定的k,该序列满足了使用第一阶多项式系数的线性复发方程。但是,在禁止某些“跑步长度”的情况下计算年轻的tableaux呢?然后,事情似乎变得更加复杂。我们以四个猜想和向OEI的捐赠捐款,以纪念第一个掠夺者。
The number of Young Tableaux whose shape is a k by n rectangle is famously (nk)! 0! ... (k-1)!/((n+k-1)!(n+k-2)!... n!) implying that for each specific k, that sequence satisfies a linear recurrence equation with polynomial coefficients of the first order. But what about counting Young tableaux where certain "run lengths" are forbidden? Then things seem to get much more complicated. We conclude with four conjectures and pledge donations to the OEIS in honor of the first provers.