论文标题
UV-NET:从边界表示学习
UV-Net: Learning from Boundary Representations
论文作者
论文摘要
我们介绍了UV-NET,这是一种新型的神经网络体系结构和表示,旨在直接在3D CAD模型的边界表示(B-REP)数据上运行。 B-REP格式广泛用于设计,模拟和制造行业,以实现复杂而精确的CAD建模操作。但是,由于数据结构的复杂性及其对连续的非欧几里得几何实体和离散拓扑实体的支持,B-REP数据在与现代机器学习一起使用时提出了一些独特的挑战。在本文中,我们为B-REP数据提出了一个统一表示形式,该表示将曲线和表面的U和V参数结构域利用为建模几何形状,以及一个邻接图,以明确模型拓扑。这导致了一个独特而有效的网络体系结构UV-NET,它以计算和记忆有效的方式融合了图像和图形卷积神经网络。为了帮助未来的研究,我们提出了一个合成标记的B-REP数据集,Solideletters,该数据集源自人类设计的字体,这些字体在几何和拓扑结构中均具有变化。最后,我们证明了UV-NET可以推广到五个数据集上的监督和无监督任务,同时表现优于替代3D形状表示,例如点云,体素和网格。
We introduce UV-Net, a novel neural network architecture and representation designed to operate directly on Boundary representation (B-rep) data from 3D CAD models. The B-rep format is widely used in the design, simulation and manufacturing industries to enable sophisticated and precise CAD modeling operations. However, B-rep data presents some unique challenges when used with modern machine learning due to the complexity of the data structure and its support for both continuous non-Euclidean geometric entities and discrete topological entities. In this paper, we propose a unified representation for B-rep data that exploits the U and V parameter domain of curves and surfaces to model geometry, and an adjacency graph to explicitly model topology. This leads to a unique and efficient network architecture, UV-Net, that couples image and graph convolutional neural networks in a compute and memory-efficient manner. To aid in future research we present a synthetic labelled B-rep dataset, SolidLetters, derived from human designed fonts with variations in both geometry and topology. Finally we demonstrate that UV-Net can generalize to supervised and unsupervised tasks on five datasets, while outperforming alternate 3D shape representations such as point clouds, voxels, and meshes.