论文标题

在凸度约束模型中推断本地参数

Inference for local parameters in convexity constrained models

论文作者

Deng, Hang, Han, Qiyang, Sen, Bodhisattva

论文摘要

我们考虑了基于从标准非参数回归模型的观测值,使用凸最小二乘估计器(LSE)$ \ wideHat {f} _n $,我们考虑了凸回归函数的局部参数的推断问题:[0,1] \ to \ mathbb {r} $。对于$ x_0 \ in(0,1)$,本地参数包括点函数函数值$ f_0(x_0)$,点式导数$ f_0'(x_0)$和unti-mode(即最小的最小化器)的$ f_0 $。估计错误的现有限制分布$(\ wideHat {f} _n(x_0) - f_0(x_0),\ wideHat {f} _n'(x_0) - f_0) - f_0'(x_0))$取决于未知的第二个衍生级$ f_0'(x_0)'(x_0)$,因此并不适用于unfection。为了避免这种僵局,我们表明以下本地归一化错误(LNE)享有关键限制行为:让$ [\ wideHat {u}(x_0)(x_0),\ wideHat {v}(x_0)] $是包含$ x_0 $ x_0 $ x_0 $ x_0 $ x_0 $的最大间隔。然后,在标准条件下,$$ \ binom {\ sqrt {n(\ wideHat {v}(x_0) - \ wideHat {u}(x_0))}(\ wideHat {f} {f} _n(x_0)-f_0(x_0(x_0)}} { \ sqrt {n(\ wideHat {v}(x_0) - \ wideHat {u}(x_0))^3}(\ wideHat {f} _n'(x_0)-f_0)-f_0)-f_0'(x_0))} \ rightquigaROWσ\ cdot \ binom {\ Mathbb {l}^{(0)} _ 2} {\ Mathbb {l}^{(1)_ 2},$ n $是样本大小,$σ$,$σ$是错误的标准偏差,并且\ mathbb {l}^{(1)} _ 2 $是通用随机变量。这种渐近关键的LNE理论立即产生了一个简单的无调过程,用于构建具有渐近确切覆盖范围和最佳长度的顺式,$ f_0(x_0)$和$ f_0'(x_0)$。我们还为$ f_0 $的反模式构建了一个渐近的关键LNE,其限制分布甚至不取决于$σ$。这些渐近关键的LNE理论将进一步扩展到其他凸度/凹度约束模型(例如,对数 - 孔隙密度估计),该模型可用于特定于问题的估计器。

We consider the problem of inference for local parameters of a convex regression function $f_0: [0,1] \to \mathbb{R}$ based on observations from a standard nonparametric regression model, using the convex least squares estimator (LSE) $\widehat{f}_n$. For $x_0 \in (0,1)$, the local parameters include the pointwise function value $f_0(x_0)$, the pointwise derivative $f_0'(x_0)$, and the anti-mode (i.e., the smallest minimizer) of $f_0$. The existing limiting distribution of the estimation error $(\widehat{f}_n(x_0) - f_0(x_0), \widehat{f}_n'(x_0) - f_0'(x_0) )$ depends on the unknown second derivative $f_0''(x_0)$, and is therefore not directly applicable for inference. To circumvent this impasse, we show that the following locally normalized errors (LNEs) enjoy pivotal limiting behavior: Let $[\widehat{u}(x_0), \widehat{v}(x_0)]$ be the maximal interval containing $x_0$ where $\widehat{f}_n$ is linear. Then, under standard conditions, $$\binom{ \sqrt{n(\widehat{v}(x_0)-\widehat{u}(x_0))}(\widehat{f}_n(x_0)-f_0(x_0)) }{ \sqrt{n(\widehat{v}(x_0)-\widehat{u}(x_0))^3}(\widehat{f}_n'(x_0)-f_0'(x_0))} \rightsquigarrow σ\cdot \binom{\mathbb{L}^{(0)}_2}{\mathbb{L}^{(1)}_2},$$ where $n$ is the sample size, $σ$ is the standard deviation of the errors, and $\mathbb{L}^{(0)}_2, \mathbb{L}^{(1)}_2$ are universal random variables. This asymptotically pivotal LNE theory instantly yields a simple tuning-free procedure for constructing CIs with asymptotically exact coverage and optimal length for $f_0(x_0)$ and $f_0'(x_0)$. We also construct an asymptotically pivotal LNE for the anti-mode of $f_0$, and its limiting distribution does not even depend on $σ$. These asymptotically pivotal LNE theories are further extended to other convexity/concavity constrained models (e.g., log-concave density estimation) for which a limit distribution theory is available for problem-specific estimators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源