论文标题
Kelt-1b的苔丝相曲线表明高时期反照率
The TESS Phase Curve of KELT-1b Suggests a High Dayside Albedo
论文作者
论文摘要
我们使用来自苔丝航天器的数据测量了过渡棕色矮kelt-1b的光相曲线(TOI 1476,Siverd等人2012)。我们发现KELT-1B在苔丝带通道中显示出显着的相变,其相对较大的相位振幅为$ 234^{+43} _ { - 44} $ ppm,次要日食深度为$ 371^{+47} _ { - 49} $ PPM。我们还测量了$ 18.3^\ circ \ pm7.4^\ circ $相对于替代点的$ 18.3^\ pm7.4^\ cirp $的边缘向东偏移。我们检测到归因于宿主恒星椭圆形失真的强相曲线信号,幅度为$ 399 \ pm19 $ ppm。我们的结果与Kelt-1b的Spitzer相曲线大致一致(Beatty等,2019),但是苔丝的日食深度比预期的要深。我们的无云的Kelt-1b日期发射的1D模型无法符合完整的日食频谱。取而代之的是,较大的苔丝日食深度表明,kelt-1b可能具有$ \ mathrm {a} _ \ mathrm {g} \ sim0.5 $的$ \ mathrm {a} _ \ mathrm {a} _ \ sim0.5 $的几何几何反照率,这将与最近通过Wong et al Al Al Al foremibium Wemperion and Wequement趋势同意。 2020年。我们认为,如果Kelt-1b具有高时期的反照率,则可能是由于Kelt-1b的夜间(Beatty etal。2019,Keating etal。2019)形成的硅酸盐云(Gao etal。2020),并随后将其运输到Kelt-1b Days Yesside hemissefere hemise hemissefere之前。
We measured the optical phase curve of the transiting brown dwarf KELT-1b (TOI 1476, Siverd et al. 2012) using data from the TESS spacecraft. We found that KELT-1b shows significant phase variation in the TESS bandpass, with a relatively large phase amplitude of $234^{+43}_{-44}$ ppm and a secondary eclipse depth of $371^{+47}_{-49}$ ppm. We also measured a marginal eastward offset in the dayside hotspot of $18.3^\circ\pm7.4^\circ$ relative to the substellar point. We detected a strong phase curve signal attributed to ellipsoidal distortion of the host star, with an amplitude of $399\pm19$ ppm. Our results are roughly consistent with the Spitzer phase curves of KELT-1b (Beatty et al. 2019), but the TESS eclipse depth is deeper than expected. Our cloud-free 1D models of KELT-1b's dayside emission are unable to fit the full combined eclipse spectrum. Instead, the large TESS eclipse depth suggests that KELT-1b may have a significant dayside geometric albedo of $\mathrm{A}_\mathrm{g}\sim0.5$ in the TESS bandpass, which would agree with the tentative trend between equilibrium temperature and geometric albedo recently suggested by Wong et al. 2020. We posit that if KELT-1b has a high dayside albedo, it is likely due to silicate clouds (Gao et al. 2020) that form on KELT-1b's nightside (Beatty et al. 2019, Keating et al. 2019) and are subsequently transported onto the western side of KELT-1b's dayside hemisphere before breaking up.