论文标题
QUTRIT的线性且可整合的非线性演变
Linear and integrable nonlinear evolution of the qutrit
论文作者
论文摘要
在QUTRIT的非平凡情况下,研究了von Neumann方程保持状态空间凸的非线性概括。该方程式可以施放到非线性普通微分方程的可集成的经典Riccati系统中。在对应于标准von Neumann方程的线性情况下,研究了这种系统的溶液,也研究了该方程概括的非线性。 Qutrit的分析动力学富含,包括准运动,多重平衡和限制周期。
The nonlinear generalization of the von Neumann equation preserving convexity of the state space is studied in the nontrivial case of the qutrit. This equation can be cast into the integrable classical Riccati system of nonlinear ordinary differential equations. The solutions of such system are investigated in both the linear case corresponding to the standard von Neumann equation and the nonlinear one referring to the generalization of this equation. The analyzed dynamics of the qutrit is rich and includes quasiperiodic motion, multiple equilibria and limit cycles.