论文标题

稳定的三维理想流,具有边缘的域中具有非呈涡度的涡度

Steady three-dimensional ideal flows with nonvanishing vorticity in domains with edges

论文作者

Seth, Douglas Svensson

论文摘要

我们证明了在具有非滑边界域中固定欧拉方程的解决方案的存在结果。这是先前存在的扩展,导致Alber(1992)的平滑域。我们认为的域具有一个由三个部分组成的边界,一个部分流体流入域,一个流体流出,一个没有流体通过。这三个部分以直角相遇。一个例子是一个右圆柱体,其中流体在一端流动,另一端流出,没有流体穿过地幔。大部分证明是致力于研究泊松方程以及这种域中可溶性所需的相关兼容条件。

We prove an existence result for solutions to the stationary Euler equations in a domain with nonsmooth boundary. This is an extension of a previous existence result in smooth domains by Alber (1992). The domains we consider have a boundary consisting of three parts, one where fluid flows into the domain, one where the fluid flows out, and one which no fluid passes through. These three parts meet at right angles. An example of this would be a right cylinder with fluid flowing in at one end and out at the other, with no fluid going through the mantle. A large part of the proof is dedicated to studying the Poisson equation and the related compatibility conditions required for solvability in this kind of domain.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源