论文标题

克服分类器不平衡,用于长尾对象检测使用平衡组软件

Overcoming Classifier Imbalance for Long-tail Object Detection with Balanced Group Softmax

论文作者

Li, Yu, Wang, Tao, Kang, Bingyi, Tang, Sheng, Wang, Chunfeng, Li, Jintao, Feng, Jiashi

论文摘要

通过基于深度学习的模型解决长尾大词汇对象检测是一项具有挑战性且苛刻的任务,但是这项工作尚未探索。在这项工作中,我们提供了有关长尾分布前最先进模型表现不佳的首次系统分析。我们发现,当数据集极度偏斜时,现有的检测方法无法建模几个示波类,这可能会导致分类器不平衡的参数幅度。直接将长尾分类模型调整为检测框架,由于检测和分类之间的内在差异无法解决此问题。在这项工作中,我们提出了一个新颖的平衡组软体磁体(BAGS)模块,用于通过小组式训练在检测框架内平衡分类器。它隐含地调节了头部和尾巴的训练过程,并确保它们都经过了足够的训练,而无需为尾巴课程的实例进行任何额外的取样。对最近的长尾大词汇对象识别基准LVIS进行了扩展的实验,表明我们的提议的行李可显着地探测各种背部和框架的侦探表现,并在各种框架上进行了探测。它击败了从长尾图像分类传输的所有最新方法,并在https://github.com/fishyuli/belancedgroupsoftmax上找到了新的最先进的ART.code。

Solving long-tail large vocabulary object detection with deep learning based models is a challenging and demanding task, which is however under-explored.In this work, we provide the first systematic analysis on the underperformance of state-of-the-art models in front of long-tail distribution. We find existing detection methods are unable to model few-shot classes when the dataset is extremely skewed, which can result in classifier imbalance in terms of parameter magnitude. Directly adapting long-tail classification models to detection frameworks can not solve this problem due to the intrinsic difference between detection and classification.In this work, we propose a novel balanced group softmax (BAGS) module for balancing the classifiers within the detection frameworks through group-wise training. It implicitly modulates the training process for the head and tail classes and ensures they are both sufficiently trained, without requiring any extra sampling for the instances from the tail classes.Extensive experiments on the very recent long-tail large vocabulary object recognition benchmark LVIS show that our proposed BAGS significantly improves the performance of detectors with various backbones and frameworks on both object detection and instance segmentation. It beats all state-of-the-art methods transferred from long-tail image classification and establishes new state-of-the-art.Code is available at https://github.com/FishYuLi/BalancedGroupSoftmax.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源