论文标题

具有自回归嵌入的地理数据的辅助任务学习

Auxiliary-task learning for geographic data with autoregressive embeddings

论文作者

Klemmer, Konstantin, Neill, Daniel B.

论文摘要

机器学习在与地理数据(例如生态学或大气科学)一起工作的广泛领域中广受欢迎。在这里,数据通常会显示出空间效应,对于神经网络来说可能很难学习。在这项研究中,我们提出了SXL,这是一种将有关空间数据自回归性质的信息嵌入到使用辅助任务的学习过程中的方法。我们利用当地的Moran i(一种流行的局部空间自相关度量)来“推动”模型来学习局部空间效应的方向和大小,从而补充了主要任务的学习。我们进一步将Moran I的新扩展引入了多种分辨率,从而同时捕获了更长的距离和较短距离的空间相互作用。新颖的多分辨率Moran的I可以轻松构造,并且由于多维张量为现有机器学习框架提供了无缝集成。在使用现实世界数据的一系列实验中,我们强调了我们的方法如何始终如一地改善无监督和监督的学习任务中神经网络的培训。在生成的空间建模实验中,我们提出了利用任务不确定性权重的辅助任务的新损失。我们提出的方法优于域特异性的空间插值基准,强调了其下游应用的潜力。这项研究从地理信息科学和机器学习中介绍了专业知识,展示了该学科的整合如何有助于应对特定领域的挑战。我们的实验代码可在GitHub上获得:https://github.com/konstantinklemmer/sxl。

Machine learning is gaining popularity in a broad range of areas working with geographic data, such as ecology or atmospheric sciences. Here, data often exhibit spatial effects, which can be difficult to learn for neural networks. In this study, we propose SXL, a method for embedding information on the autoregressive nature of spatial data directly into the learning process using auxiliary tasks. We utilize the local Moran's I, a popular measure of local spatial autocorrelation, to "nudge" the model to learn the direction and magnitude of local spatial effects, complementing the learning of the primary task. We further introduce a novel expansion of Moran's I to multiple resolutions, thus capturing spatial interactions over longer and shorter distances simultaneously. The novel multi-resolution Moran's I can be constructed easily and as a multi-dimensional tensor offers seamless integration into existing machine learning frameworks. Throughout a range of experiments using real-world data, we highlight how our method consistently improves the training of neural networks in unsupervised and supervised learning tasks. In generative spatial modeling experiments, we propose a novel loss for auxiliary task GANs utilizing task uncertainty weights. Our proposed method outperforms domain-specific spatial interpolation benchmarks, highlighting its potential for downstream applications. This study bridges expertise from geographic information science and machine learning, showing how this integration of disciplines can help to address domain-specific challenges. The code for our experiments is available on Github: https://github.com/konstantinklemmer/sxl.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源