论文标题

分析新的多物种肿瘤生长模型与1D血管网络耦合3D相位

Analysis of a new multispecies tumor growth model coupling 3D phase-fields with a 1D vascular network

论文作者

Fritz, Marvin, Jha, Prashant K., Köppl, Tobias, Oden, J. Tinsley, Wohlmuth, Barbara

论文摘要

在这项工作中,我们介绍并分析了一种数学模型,用于融合ECM侵蚀,间质流以及血管流量和营养转运的作用的数学模型。该模型是相位或扩散接口类型的模型,其中细胞物种和其他成分的多个阶段通过平滑演化的界面分离。该模型涉及达西定律的中尺度版本,以捕获组织基质中的流动机理。考虑到供应健康和癌性组织的脉管系统中的建模流量和运输过程,考虑了一维(1D)方程。由于管理传输和流动过程的模型与三维(3D)域上的细胞物种模型一起定义,因此我们获得了3D-1D耦合模型。我们对弱解决方案的存在显示了一些数学结果。此外,给出了模拟结果,说明了肿瘤的演变和ECM侵蚀的影响。

In this work, we present and analyze a mathematical model for tumor growth incorporating ECM erosion, interstitial flow, and the effect of vascular flow and nutrient transport. The model is of phase-field or diffused-interface type in which multiple phases of cell species and other constituents are separated by smooth evolving interfaces. The model involves a mesoscale version of Darcy's law to capture the flow mechanism in the tissue matrix. Modeling flow and transport processes in the vasculature supplying the healthy and cancerous tissue, one-dimensional (1D) equations are considered. Since the models governing the transport and flow processes are defined together with cell species models on a three-dimensional (3D) domain, we obtain a 3D-1D coupled model. We show some mathematical results on the existence of weak solutions. Furthermore, simulation results are presented illustrating the evolution of tumors and the effects of ECM erosion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源