论文标题

带有近节循环脉冲的激光韦克菲尔德加速器中的载体 - 内玻璃相效应

Carrier-envelope phase effects in Laser Wakefield Acceleration with near-single-cycle pulses

论文作者

Huijts, Julius, Andriyash, Igor, Rovige, Lucas, Vernier, Aline, Faure, Jerome

论文摘要

驾驶激光韦克赛场的加速度非常短,近乎单周期激光脉冲对于实现电子源的实现至关重要,该电子源可以在依靠适度的激光能量的同时以KHz重复速率运行。从基本的角度来看,这也很有趣,因为Ponderomotive近似不再对这种短脉冲有效。通过粒子中的模拟,我们展示了在激光极化平面中血浆响应如何变得不对称,并取决于激光脉冲的载体 - 内维波相(CEP)。对于自我注射的情况,这反过来又强烈影响注入电子的初始条件,从而导致电子束的集体betatron振荡。结果,电子光束指向,电子能谱和发射的betatron辐射方向依赖于CEP。对于密度梯度中的注射,对梁指向的影响降低,电子能谱是与CEP无关的,因为电子注入大多是纵向的,并且主要由密度梯度确定。我们的结果强调了在该制度中控制CEP在产生稳定且可重复的相对论电子束并确定如何在实验中观察到CEP效应的重要性。将来,CEP控制可能成为控制加速电子束的能量光谱或指向的附加工具。

Driving laser wakefield acceleration with extremely short, near single-cycle laser pulses is crucial to the realisation of an electron source that can operate at kHz-repetition rate while relying on modest laser energy. It is also interesting from a fundamental point of view, as the ponderomotive approximation is no longer valid for such short pulses. Through particle-in-cell simulations, we show how the plasma response becomes asymmetric in the plane of laser polarization, and dependent on the carrier-envelope phase (CEP) of the laser pulse. For the case of self-injection, this in turn strongly affects the initial conditions of injected electrons, causing collective betatron oscillations of the electron beam. As a result, the electron beam pointing, electron energy spectrum and the direction of emitted betatron radiation become CEP-dependent. For injection in a density gradient the effect on beam pointing is reduced and the electron energy spectrum is CEP-independent, as electron injection is mostly longitudinal and mainly determined by the density gradient. Our results highlight the importance of controlling the CEP in this regime for producing stable and reproducible relativistic electron beams and identify how CEP effects may be observed in experiments. In the future, CEP control may become an additional tool to control the energy spectrum or pointing of the accelerated electron beam.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源