论文标题

使用野外图像进行抗烟的异常检测

Use of in-the-wild images for anomaly detection in face anti-spoofing

论文作者

Abduh, Latifah, Ivrissimtzis, Ioannis

论文摘要

面对反欺骗的传统方法将其视为二进制分类问题,并且在专门的抗烟数据库中对二进制分类器进行了培训和验证。这种方法的缺点之一是,由于面部欺骗攻击,环境因素和通常较小的样本量的可变性,因此这种分类器并不能很好地概括到以前看不见的数据库中。接近抗旋转作为单级分类问题的异常检测正在成为越来越流行的替代方法。然而,在所有现有的针对面部抗旋转异常检测的工作中,即使只需要真实面孔的常见图像,拟议的培训方案也仅利用来自专业抗烟数据库的图像。在这里,我们探讨了野外图像的使用以及来自非专业面部数据库的图像,以训练一级分类器进行抗旋转。我们采用公认的技术,在真实面孔上训练卷积自动编码器,并将输入的重建错误与阈值进行比较,以相应地将面部图像分类为客户端或冒名顶替者。 我们的研究结果表明,野外图像的训练集包含在训练集中增加了分类器在看不见的数据库中的区别能力,这证明了曲线下面积的价值的大幅度增加。为了限制我们的方法,我们注意到在看不见的数据库上找到合适的操作点的问题仍然是一个挑战,这一点由一半总误差率的值证明。

The traditional approach to face anti-spoofing sees it as a binary classification problem, and binary classifiers are trained and validated on specialized anti-spoofing databases. One of the drawbacks of this approach is that, due to the variability of face spoofing attacks, environmental factors, and the typically small sample size, such classifiers do not generalize well to previously unseen databases. Anomaly detection, which approaches face anti-spoofing as a one-class classification problem, is emerging as an increasingly popular alternative approach. Nevertheless, in all existing work on anomaly detection for face anti-spoofing, the proposed training protocols utilize images from specialized anti-spoofing databases only, even though only common images of real faces are needed. Here, we explore the use of in-the-wild images, and images from non-specialized face databases, to train one-class classifiers for face anti-spoofing. Employing a well-established technique, we train a convolutional autoencoder on real faces and compare the reconstruction error of the input against a threshold to classify a face image accordingly as either client or imposter. Our results show that the inclusion in the training set of in-the-wild images increases the discriminating power of the classifier significantly on an unseen database, as evidenced by a large increase in the value of the Area Under the Curve. In a limitation of our approach, we note that the problem of finding a suitable operating point on the unseen database remains a challenge, as evidenced by the values of the Half Total Error Rate.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源