论文标题

因果动力学是否意味着局部相互作用?

Does causal dynamics imply local interactions?

论文作者

Zimborás, Zoltán, Farrelly, Terry, Farkas, Szilárd, Masanes, Lluis

论文摘要

我们考虑在离散空间中具有因果动力学的量子系统,也称为量子细胞自动机(QCA)。由于时间差异,这种类型的动力学不是由哈密顿量的特征,而是一次性单位。这可以写为哈密顿尔顿人的指数,但以一种高度唯一的方式写成。我们问,从某种意义上说,汉密尔顿人产生QCA统一的人是否是本地的,我们得到了两个截然不同的答案。一方面,我们提供了一个QCA的示例,所有产生的哈密顿人都是完全非本地的,因为相互作用不会随距离的衰减。我们期望这一结果对Floquet系统中拓扑阶段的分类产生相关后果,因为这依赖于有效的哈密顿量。另一方面,我们表明,所有一维准准费米QCA都具有准本地生成的汉密尔顿人,在大规模的情况下,相互作用呈指数衰减,在关键情况下是代数。我们还证明,某些可集成的系统没有局部,准本地和低重量运动常数。挑战集成性定义的结果。

We consider quantum systems with causal dynamics in discrete spacetimes, also known as quantum cellular automata (QCA). Due to time-discreteness this type of dynamics is not characterized by a Hamiltonian but by a one-time-step unitary. This can be written as the exponential of a Hamiltonian but in a highly non-unique way. We ask if any of the Hamiltonians generating a QCA unitary is local in some sense, and we obtain two very different answers. On one hand, we present an example of QCA for which all generating Hamiltonians are fully non-local, in the sense that interactions do not decay with the distance. We expect this result to have relevant consequences for the classification of topological phases in Floquet systems, given that this relies on the effective Hamiltonian. On the other hand, we show that all one-dimensional quasi-free fermionic QCAs have quasi-local generating Hamiltonians, with interactions decaying exponentially in the massive case and algebraically in the critical case. We also prove that some integrable systems do not have local, quasi-local nor low-weight constants of motion; a result that challenges the standard definition of integrability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源