论文标题
语义链接映射用于活动视觉对象搜索
Semantic Linking Maps for Active Visual Object Search
论文作者
论文摘要
我们的目标是使移动机器人在各种常见的人类环境中运作。这样的机器人需要能够推理以前看不见的目标对象的位置。地标物体可以通过大大缩小搜索空间来帮助这种推理。更具体地说,我们可以利用有关地标和目标对象之间常见空间关系的背景知识。例如,看到桌子并知道杯子通常可以在桌子上找到有助于发现杯子。这种相关可以表示为对象的配对关系的分布。在本文中,我们通过引入语义链接图(Slim)模型提出了一种主动的视觉对象搜索策略方法。 Slim同时保持了对目标对象的位置以及地标对象的位置的信念,同时考虑了概率的对象间空间关系。基于Slim,我们描述了一种混合搜索策略,该策略选择了基于维护的信念来搜索目标对象的下一个最佳视图姿势。我们通过模拟环境中的比较实验证明了基于细长的搜索策略的效率。我们进一步证明了使用提取移动操作机器人在场景中基于细长的搜索的现实适用性。
We aim for mobile robots to function in a variety of common human environments. Such robots need to be able to reason about the locations of previously unseen target objects. Landmark objects can help this reasoning by narrowing down the search space significantly. More specifically, we can exploit background knowledge about common spatial relations between landmark and target objects. For example, seeing a table and knowing that cups can often be found on tables aids the discovery of a cup. Such correlations can be expressed as distributions over possible pairing relationships of objects. In this paper, we propose an active visual object search strategy method through our introduction of the Semantic Linking Maps (SLiM) model. SLiM simultaneously maintains the belief over a target object's location as well as landmark objects' locations, while accounting for probabilistic inter-object spatial relations. Based on SLiM, we describe a hybrid search strategy that selects the next best view pose for searching for the target object based on the maintained belief. We demonstrate the efficiency of our SLiM-based search strategy through comparative experiments in simulated environments. We further demonstrate the real-world applicability of SLiM-based search in scenarios with a Fetch mobile manipulation robot.