论文标题

平滑射击表面的模量方案参数化攻击

A moduli scheme parametrizing blowups of smooth projective surfaces

论文作者

Marinescu, Monica

论文摘要

我们构造一个模块方案$ f [n] $,该$ f [n] $,该元组$(s_1,s_2,\ dots,s_ {n+1},p_1,p_1,p_2,\ dots,p_n)$,其中$ s_1 $是$ \ text {spec} r $ and $ s_ po_ po_ a po_ a po_ a po_ a $ s $ s $ s $ s $ s $ s $ s $ s $ s $ $ \ forall 1 \ leq i \ leq n $。我们表明,这种模量方案是平稳且投射的。我们证明$ f [n] $具有光滑的除数$ d_ {i,j}^{(n)} $,$ \ forall 1 \ leq i <j \ leq n $,它与映射$ p_j \ mapsto p_i p_i $ p_i $相对应。当$ r = k $是一个代数关闭的字段时,我们证明了这些分隔线在$ \ mathbb {a}^*(s_1^n)$上生成的Chow Ring $ \ mathbb {a}^*(f [n])$。最终,当$ s_1 $是一个复杂的理性表面时,我们将提供$ \ mathbb {a}^*(f [n])$的精确描述。

We construct a moduli scheme $F[n]$ that parametrizes tuples $(S_1, S_2, \dots, S_{n+1}, p_1, p_2, \dots, p_n)$ in which $S_1$ is a fixed smooth surface over $\text{Spec } R$ and $S_{i+1}$ is the blowup of $S_i$ at a point $p_i$, $\forall 1\leq i\leq n$. We show that this moduli scheme is smooth and projective. We prove that $F[n]$ has smooth divisors $D_{i,j}^{(n)}$, $\forall 1\leq i<j\leq n$, which correspond to tuples that map $p_j\mapsto p_i$ under the projection morphism $S_j\to S_i$. When $R=k$ is an algebraically closed field, we demonstrate that the Chow ring $\mathbb{A}^*(F[n])$ is generated by these divisors over $\mathbb{A}^*(S_1^n)$. We end by giving a precise description of $\mathbb{A}^*(F[n])$ when $S_1$ is a complex rational surface.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源