论文标题
在无限类别的宽松限制上
On lax limits in infinity categories
论文作者
论文摘要
我们引入了无限类别的部分宽松限制,这些限制在普通极限和宽松限制之间插值。最自然的宽松限制例子只是部分松弛。我们提供了由丰富的类别和作业产生的例子。我们的主要结果是在绿色构造方面的部分松弛限制和colimits的公式。这概括了一个普通限制和Gepner-Haugseng-Nikolaus的Lurie公式,以完全松懈。
We introduce partially lax limits of infinity-categories, which interpolate between ordinary limits and lax limits. Most naturally occurring examples of lax limits are only partially lax; we give examples arising from enriched categories and operads. Our main result is a formula for partially lax limits and colimits in terms of the Grothendieck construction. This generalizes a formula of Lurie for ordinary limits and of Gepner-Haugseng-Nikolaus for fully lax limits.