论文标题
高维黑盒优化的自适应随机梯度方法
An adaptive stochastic gradient-free approach for high-dimensional blackbox optimization
论文作者
论文摘要
在这项工作中,我们提出了一种新型的自适应随机梯度(ASGF)方法,用于根据功能评估解决高维非凸优化问题。我们采用了目标功能的定向高斯平滑,从而产生梯度的替代品,并通过利用损失景观的非本地信息来帮助避免局部优势不良。应用确定性的正交方案会导致一种巨大的可扩展技术,该技术具有样本有效的且可达到光谱精度。在每个步骤中,我们主要遵循平滑梯度的替代物,随机生成搜索方向。这使得可以剥削梯度方向,同时维持足够的空间探索,并加速趋同于全球极值。此外,我们还利用Lipschitz常数的局部近似值,以便自适应地调整所有超参数的值,从而消除当前算法的仔细微调,这些算法通常是在应用于大型学习任务时成功的。因此,与其他无梯度方法(包括所谓的“进化策略”)相比,ASGF策略在解决高维非凸优化问题时提供了重大改进,以及依赖于目标函数梯度信息的迭代方法。我们通过为基准全球优化问题和强化学习任务提供了几项比较数值研究来说明该方法的改善性能。
In this work, we propose a novel adaptive stochastic gradient-free (ASGF) approach for solving high-dimensional nonconvex optimization problems based on function evaluations. We employ a directional Gaussian smoothing of the target function that generates a surrogate of the gradient and assists in avoiding bad local optima by utilizing nonlocal information of the loss landscape. Applying a deterministic quadrature scheme results in a massively scalable technique that is sample-efficient and achieves spectral accuracy. At each step we randomly generate the search directions while primarily following the surrogate of the smoothed gradient. This enables exploitation of the gradient direction while maintaining sufficient space exploration, and accelerates convergence towards the global extrema. In addition, we make use of a local approximation of the Lipschitz constant in order to adaptively adjust the values of all hyperparameters, thus removing the careful fine-tuning of current algorithms that is often necessary to be successful when applied to a large class of learning tasks. As such, the ASGF strategy offers significant improvements when solving high-dimensional nonconvex optimization problems when compared to other gradient-free methods (including the so called "evolutionary strategies") as well as iterative approaches that rely on the gradient information of the objective function. We illustrate the improved performance of this method by providing several comparative numerical studies on benchmark global optimization problems and reinforcement learning tasks.