论文标题
图表,纤维和colimits的分解
Diagrams, Fibrations, and the Decomposition of Colimits
论文作者
论文摘要
本文的贡献是双重的。在Grothendieck的纤维化类别理论的框架内,我们提出了一个基本的2个辅助网络,围绕给定类别中所有小图的形成类别以及函数的Grothendieck类别形成的类别形成。我们证明了这些辅助设备的效用,部分是通过得出(共同)限制的三个公式:对众所周知的fubini公式的“扭曲”概括,这是Chachólski和Scherer最初建立的;一个新的“普通colimit分解公式”;实际上是启动这项工作的一般公式的特殊情况,并由巴丹宁和伯格独立证明。我们使用提供完全不同的见解的方法为这种Colimit分解公式提供了三个证明。 我们的2个功能网络的“基础”扩展了Ehresmann School和Guitart的早期工作,并承诺将具有独立的利益。它涉及形成任意函数的图类别,被视为本地小类别类别的箭头类别的一个对象,而不是单纯类别的类别。新出现的广义吉塔尔2次接合因子的左伴侣通过分裂的玻璃体(共同)纤维的2等效性以及严格的(共同)索引类别,我们在这里通常通过允许基本类别中的2维变异来提出这一点。
The contributions of this paper are twofold. Within the framework of Grothendieck's fibrational category theory, we present a web of fundamental 2-adjunctions surrounding the formation of the category of all small diagrams in a given category and the formation of the Grothendieck category of a functor into the category of small categories. We demonstrate the utility of these adjunctions, in part by deriving three formulae for (co-)limits: a `twisted' generalization of the well-known Fubini formula, as first established by Chachólski and Scherer; a new `general colimit decomposition formula'; and a special case of the general formula, which actually initiated this work, and which was proved independently by Batanin and Berger. We give three proofs for this colimit decomposition formula, using methods that provide quite distinct insights. The `base' of our web of 2-adjunctions extends earlier work of the Ehresmann school and Guitart and promises to be of independent interest. It involves forming the diagram category of an arbitrary functor, seen as an object of the arrow category of the category of locally small categories, rather than that of a mere category. The left adjoint of the emerging generalized Guitart 2-adjunction factors through the 2-equivalence of split Grothendieck (co-)fibrations and strictly (co-)indexed categories, which we present here most generally by allowing 2-dimensional variation in the base categories.