论文标题
在随机环境中关键多类分支过程的中央限制定理
Central limit theorem for a critical multi-type branching process in random environment
论文作者
论文摘要
让(z n)n $ \ ge $ 0带有z n =(z n(i,j))1 $ \ le $ i,j $ \ le $ p是随机环境中的p多类型临界分支过程,让m n成为Z n的期望,给定固定的环境。我们证明了关于分支过程序列分布的收敛定理Zn | Mn | /| z n | > 0和ln Zn $ \ sqrt $ n /| z n | > 0。这些定理在随机环境中为单型关键分支过程扩展了相似的结果。
Let (Z n) n$\ge$0 with Z n = (Z n (i, j)) 1$\le$i,j$\le$p be a p multi-type critical branching process in random environment, and let M n be the expectation of Z n given a fixed environment. We prove theorems on convergence in distribution of sequences of branching processes Zn |Mn| /|Z n | > 0 and ln Zn $\sqrt$ n /|Z n | > 0. These theorems extend similar results for single-type critical branching process in random environment.