论文标题

在界面动力学中的表面张力和惯性稳定机制的相互作用上

On interplay of surface tension and inertial stabilization mechanisms in the interface dynamics with interfacial mass flux

论文作者

Ilyin, D. V., Abarzhi, S. I.

论文摘要

这项工作着重于在加速度和表面张力的情况下具有界面质量通量的界面动力学。我们采用一般矩阵方法来找到线性的边界价值问题保护质量,动量和能量的基本解决方案。我们发现,根据加速度,表面张力和密度比的值,动力学可能是稳定的或不稳定的。在稳定的制度中,流动在整体中具有非扰动场,在界面处不含剪切,并且具有恒定的界面速度。仅当动力学加速时,动力学才不稳定,并且当加速度值超过阈值结合惯性稳定机制和表面张力的贡献时。这种不稳定的特性明确将其与其他流体不稳定性区分开。特别是,其速度场在整体中具有潜在的和涡流的成分,并且在界面上无剪切。它的动力学描述了振幅增长的常规波,并具有增长的界面速度。对于强大的加速度,与经典的Landau和Rayleigh-Taylor动力学相比,保守动力学的这种流体不稳定性具有最快的生长速率和最大的稳定表面张力值。我们发现,可以稳定流体不稳定性并在其上生长最快的初始扰动波长的值。我们确定了高能密度等离子体中实验和模拟的理论基准及其在自然和技术中的应用问题的结果。

This work focuses on the interfacial dynamics with interfacial mass flux in the presence of acceleration and surface tension. We employ the general matrix method to find the fundamental solutions for the linearized boundary value problem conserving mass, momentum and energy. We find that the dynamics can be stable or unstable depending on the values of the acceleration, the surface tension and the density ratio. In the stable regime, the flow has the non-perturbed fields in the bulk, is shear-free at the interface, and has the constant interface velocity. The dynamics is unstable only when it is accelerated, and when the acceleration value exceeds a threshold combining contributions of the inertial stabilization mechanism and the surface tension. The properties of this instability unambiguously differentiate it from other fluid instabilities. Particularly, its velocity field has potential and vortical components in the bulk and is shear free at the interface. Its dynamics describes the standing wave with the growing amplitude, and has the growing interface velocity. For strong accelerations, this fluid instability of the conservative dynamics has the fastest growth-rate and the largest stabilizing surface tension value when compared to the classical Landau and Rayleigh-Taylor dynamics. We find the values of the initial perturbation wavelength at which the fluid instability can be stabilized and at which it has the fastest growth. We identify theory benchmarks for experiments and simulations in high energy density plasmas and its outcomes for application problems in nature and technology.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源