论文标题
Timoshenko纳米梁的压力驱动的局部非局部混合模型
A stress-driven local-nonlocal mixture model for Timoshenko nano-beams
论文作者
论文摘要
提出了适合应力驱动的混合物,用于蒂莫申科纳米梁。该模型是局部和非局部阶段的凸组合,并规避了纳米技术兴趣结构的应变驱动的Eringen样式中出现了一些不适的问题。混合物的非局部部分是应力场与以比例参数为特征的双指数平均内核函数之间的积分卷积。应力驱动的混合物等同于配备涉及弯曲和剪切场的本构边界条件的差分问题。 Timoshenko纳米梁的封闭式解决方案通过有效的分析策略建立了用于选定边界和负载条件的封闭式溶液。数值结果在比例参数方面表现出僵硬的行为。
A well-posed stress-driven mixture is proposed for Timoshenko nano-beams. The model is a convex combination of local and nonlocal phases and circumvents some problems of ill-posedness emerged in strain-driven Eringen-like formulations for structures of nanotechnological interest. The nonlocal part of the mixture is the integral convolution between stress field and a bi-exponential averaging kernel function characterized by a scale parameter. The stress-driven mixture is equivalent to a differential problem equipped with constitutive boundary conditions involving bending and shear fields. Closed-form solutions of Timoshenko nano-beams for selected boundary and loading conditions are established by an effective analytical strategy. The numerical results exhibit a stiffening behavior in terms of scale parameter.