论文标题
亚图计数的本地限制定理
Local limit theorems for subgraph counts
论文作者
论文摘要
我们引入了一个一般框架,用于研究抗调解和局部极限定理,以进行随机变量,包括图形统计。我们的方法涉及傅立叶分析,脱钩,布尔函数的超收缩率与``固定大小''和``独立''模型之间的转移之间的相互作用。我们还由于詹森(Janson)而调整了``图形因素''的概念。 结果,我们在gilmer和Kopparty和Berkowitz的作品的基础上得出了ERDőS-RENYI随机图$ G(N,P)$ g(n,p)$ g(n,p)$ g(n,p)$中的局部中央限制定理。这些结果改善了Fox,Kwan和Sauermann的抗议结果,并部分回答了Fox,Kwan和Sauermann的问题。我们还为诱导子图计数提供了局部限制中心限制定理,只要$ p $与一组``有问题的''密度限制了,部分回答了Fox,Kwan和Sauermann的问题。然后,我们通过展示一个断开的图表来证明这些限制是必要的,对于所有常数$ p $,在最佳尺度上的抗调节次数失败,并为$ g(n,1/2)$ g(n,1/2)$ g(n,1/2)找到抗浓度的抗浓度均在$ g(n,1/2)中失败的图$ h $。这些反示例解决了否定的Fox,Kwan和Sauermann的抗分辨率猜想。 最后,我们还研究了$ k $ term算术算术进程的$ \ mathbb {z}/n \ mathbb {z} $的计数的行为,并推断出一个本地限制定理,其中这种行为在全球范围内是高斯的,但具有非琐事的本地振荡(根据Ramanujan theta theta theta theta funcormation)。这些结果改善了作者和伯科维茨的问题的结果和回答,并回答了Fox,Kwan和Sauermann的问题。
We introduce a general framework for studying anticoncentration and local limit theorems for random variables, including graph statistics. Our methods involve an interplay between Fourier analysis, decoupling, hypercontractivity of Boolean functions, and transference between ``fixed-size'' and ``independent'' models. We also adapt a notion of ``graph factors'' due to Janson. As a consequence, we derive a local central limit theorem for connected subgraph counts in the Erdős-Renyi random graph $G(n,p)$, building on work of Gilmer and Kopparty and of Berkowitz. These results improve an anticoncentration result of Fox, Kwan, and Sauermann and partially answers a question of Fox, Kwan, and Sauermann. We also derive a local limit central limit theorem for induced subgraph counts, as long as $p$ is bounded away from a set of ``problematic'' densities, partially answering a question of Fox, Kwan, and Sauermann. We then prove these restrictions are necessary by exhibiting a disconnected graph for which anticoncentration for subgraph counts at the optimal scale fails for all constant $p$, and finding a graph $H$ for which anticoncentration for induced subgraph counts fails in $G(n,1/2)$. These counterexamples resolve anticoncentration conjectures of Fox, Kwan, and Sauermann in the negative. Finally, we also examine the behavior of counts of $k$-term arithmetic progressions in subsets of $\mathbb{Z}/n\mathbb{Z}$ and deduce a local limit theorem wherein the behavior is Gaussian at a global scale but has nontrivial local oscillations (according to a Ramanujan theta function). These results improve on results of and answer questions of the authors and Berkowitz, and answer a question of Fox, Kwan, and Sauermann.