论文标题
通过通用度量学习增强分解机
Enhancing Factorization Machines with Generalized Metric Learning
论文作者
论文摘要
分解机(FMS)有效地合并侧面信息,以克服推荐系统中的冷启动和数据稀疏问题。传统FMS采用内部产品来对不同属性之间的二阶相互作用进行建模,这些属性通过特征向量表示。问题是内部产品违反了特征向量的三角不平等属性。结果,它不能很好地捕获细粒度的属性相互作用,从而导致了优化的性能。最近,在FMS中利用了欧几里得距离来替代内部产品,并提供了更好的性能。但是,以前的FM方法(包括配备欧几里得距离的方法)都集中在属性级相互作用建模上,忽略了属性内部的关键固有特征相关性。因此,他们无法对现实数据中表现出的复杂和丰富的相互作用进行建模。为了解决这个问题,在本文中,我们提出了一个配备通用度量学习技术的FM框架,以更好地捕获这些特征相关性。特别是,基于此框架,我们提出了Mahalanobis距离和深度神经网络(DNN)方法,该方法可以有效地对特征之间的线性和非线性相关性进行建模。此外,我们设计了一种有效的方法来简化模型功能。在几个基准数据集上的实验表明,我们提出的框架的表现可以大大优于几个最先进的基线。此外,我们在二手交易上收集了一个新的大规模数据集,以证明我们方法对推荐系统中的冷启动和数据稀疏问题的有效性是合理的。
Factorization Machines (FMs) are effective in incorporating side information to overcome the cold-start and data sparsity problems in recommender systems. Traditional FMs adopt the inner product to model the second-order interactions between different attributes, which are represented via feature vectors. The problem is that the inner product violates the triangle inequality property of feature vectors. As a result, it cannot well capture fine-grained attribute interactions, resulting in sub-optimal performance. Recently, the Euclidean distance is exploited in FMs to replace the inner product and has delivered better performance. However, previous FM methods including the ones equipped with the Euclidean distance all focus on the attribute-level interaction modeling, ignoring the critical intrinsic feature correlations inside attributes. Thereby, they fail to model the complex and rich interactions exhibited in the real-world data. To tackle this problem, in this paper, we propose a FM framework equipped with generalized metric learning techniques to better capture these feature correlations. In particular, based on this framework, we present a Mahalanobis distance and a deep neural network (DNN) methods, which can effectively model the linear and non-linear correlations between features, respectively. Besides, we design an efficient approach for simplifying the model functions. Experiments on several benchmark datasets demonstrate that our proposed framework outperforms several state-of-the-art baselines by a large margin. Moreover, we collect a new large-scale dataset on second-hand trading to justify the effectiveness of our method over cold-start and data sparsity problems in recommender systems.