论文标题
有限群体对消失集有一些限制
Finite groups with some restriction on the vanishing set
论文作者
论文摘要
令$ x $为有限组$ g $的一个元素,并表示$ x $ by $ \ mathrm {ord}(x)$的订单。我们考虑一个有限的组$ g $,以便$ \ gcd(\ mathrm {ord}(x),\ mathrm {ord}(y))\ leqslant 2 $,用于任何两个消失的元素$ x $和$ y $,其中包含在不同的共同类别中。我们表明,这样的$ g $是可以解决的。当$ g $上面的属性是超偏好的时,我们表明$ g $具有普通的metabelian $ 2 $结合。
Let $ x $ be an element of a finite group $ G $ and denote the order of $ x $ by $ \mathrm{ord}(x) $. We consider a finite group $ G $ such that $ \gcd(\mathrm{ord}(x),\mathrm{ord}(y))\leqslant 2 $ for any two vanishing elements $ x $ and $ y $ contained in distinct conjugacy classes. We show that such a group $ G $ is solvable. When $ G $ with the property above is supersolvable, we show that $ G $ has a normal metabelian $ 2 $-complement.