论文标题
个性化的Pagerank到目标节点,重新审视
Personalized PageRank to a Target Node, Revisited
论文作者
论文摘要
个性化Pagerank(PPR)是图形挖掘和网络分析中广泛使用的节点接近度度量。给定一个源节点$ s $和目标节点$ t $,ppr value $π(s,t)$表示从$ t $ t $ th $ t $终止的随机步行的概率,因此表明双向重要性在$ s $和$ t $之间。现有的大多数工作都集中在单源查询上,该查询要求给定源节点$ s $的PPR值以及V $中的每个节点$ t \。但是,单源查询仅反映了每个节点$ t $在$ s $方面的重要性。在本文中,我们考虑{\ em单目标PPR查询},该}衡量了PPR重要性相反的方向。给定目标节点$ t $,单目标PPR查询要求给定目标节点$ t $的每个节点$ s \ in V $中的每个节点$ s \。我们提出了RBS,这是一种新型算法,该算法以最佳的计算复杂性回答近似的单目标查询。我们表明,RBS改善了三个混凝土应用:重击球手PPR查询,单源Simrank计算和可扩展的图形神经网络。我们进行实验,以证明RB在现实世界基准数据集上的效率和精度方面优于最先进的算法。
Personalized PageRank (PPR) is a widely used node proximity measure in graph mining and network analysis. Given a source node $s$ and a target node $t$, the PPR value $π(s,t)$ represents the probability that a random walk from $s$ terminates at $t$, and thus indicates the bidirectional importance between $s$ and $t$. The majority of the existing work focuses on the single-source queries, which asks for the PPR value of a given source node $s$ and every node $t \in V$. However, the single-source query only reflects the importance of each node $t$ with respect to $s$. In this paper, we consider the {\em single-target PPR query}, which measures the opposite direction of importance for PPR. Given a target node $t$, the single-target PPR query asks for the PPR value of every node $s\in V$ to a given target node $t$. We propose RBS, a novel algorithm that answers approximate single-target queries with optimal computational complexity. We show that RBS improves three concrete applications: heavy hitters PPR query, single-source SimRank computation, and scalable graph neural networks. We conduct experiments to demonstrate that RBS outperforms the state-of-the-art algorithms in terms of both efficiency and precision on real-world benchmark datasets.