论文标题
Mumbo:多任务最大值贝叶斯优化
MUMBO: MUlti-task Max-value Bayesian Optimization
论文作者
论文摘要
我们提出了Mumbo,这是多任任务贝叶斯优化的第一个高性能且计算高效的采集函数。在这里,挑战是通过以某种方式评估低成本功能来进行有效的优化。这是一类广泛的问题,包括流行的多保真优化任务。但是,尽管已知信息理论采集功能可提供最先进的贝叶斯优化,但现有的多任务场景实现具有刺激性的计算要求。因此,以前的采集功能仅适用于低维参数空间和功能查询成本的问题足够大,从而使非常明显的优化开销。在这项工作中,我们得出了一种新型的多任务版本的熵搜索,在经典优化挑战和多任务超级参数调音中提供了稳健的性能。 Mumbo可扩展有效,允许多任务贝叶斯优化在具有丰富参数和忠实空间的问题中部署。
We propose MUMBO, the first high-performing yet computationally efficient acquisition function for multi-task Bayesian optimization. Here, the challenge is to perform efficient optimization by evaluating low-cost functions somehow related to our true target function. This is a broad class of problems including the popular task of multi-fidelity optimization. However, while information-theoretic acquisition functions are known to provide state-of-the-art Bayesian optimization, existing implementations for multi-task scenarios have prohibitive computational requirements. Previous acquisition functions have therefore been suitable only for problems with both low-dimensional parameter spaces and function query costs sufficiently large to overshadow very significant optimization overheads. In this work, we derive a novel multi-task version of entropy search, delivering robust performance with low computational overheads across classic optimization challenges and multi-task hyper-parameter tuning. MUMBO is scalable and efficient, allowing multi-task Bayesian optimization to be deployed in problems with rich parameter and fidelity spaces.