论文标题

全态生成的Hopf代数和量子谎言组

Holomorphically finitely generated Hopf algebras and quantum Lie groups

论文作者

Aristov, Oleg

论文摘要

我们研究拓扑HOPF代数,这些代数是有限型(HFG)作为fréchetArens的拓扑代数 - 在Pirkovskii的意义上是ichechet Arens的代数。其中一些(但不是全部)可以通过应用分析函数从Aggine Hopf代数获得。我们表明,交换性HFG HOPF代数始终是复杂的谎言组(实际上是Stein组)的全体形态函数的代数,并且证明相应的类别是等效的。 Akbarov紧凑地生成复杂的Lie Group〜 $ G $,相关联的拓扑Hopf代数,代数$ {\ Mathscr a} _ {exp}(exp}(g)的指数分析函数。我们表明它是HFG,但并非每个共同公愿的HFG Hopf代数都是这种形式。在连接$ g $的情况下,使用作者的先前结果,我们建立了$ {\ Mathscr a} _ {exp}(g)$的分析结构定理。这取决于$ g $的大规模几何形状。我们还考虑了一些有趣的示例,包括经典$ \ hbar $ - ad量子组的复杂分析类似物。

We study topological Hopf algebras that are holomorphically finitely generated (HFG) as Fréchet Arens--Micheal algebras in the sense of Pirkovskii. Some of them, but not all, can be obtained from affine Hopf algebras by applying the analytization functor. We show that a commutative HFG Hopf algebra is always an algebra of holomorphic functions on a complex Lie group (actually a Stein group), and prove that the corresponding categories are equivalent. With a compactly generated complex Lie group~$G$, Akbarov associated a cocommutative topological Hopf algebra, the algebra ${\mathscr A}_{exp}(G)$ of exponential analytic functionals. We show that it is HFG but not every cocommutative HFG Hopf algebra is of this form. In the case when $G$ is connected, using previous results of the author we establish a theorem on the analytic structure of ${\mathscr A}_{exp}(G)$. It depends on the large-scale geometry of $G$. We also consider some interesting examples including complex-analytic analogues of classical $\hbar$-adic quantum groups.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源