论文标题
贝叶斯更新方案用于大流行:估计COVID-19的感染动态
A Bayesian Updating Scheme for Pandemics: Estimating the Infection Dynamics of COVID-19
论文作者
论文摘要
流行模型在理解和应对新兴的Covid-19大流行方面起着关键作用。广泛使用的室模型是静态的,并且在评估新兴大流行的干预策略方面的用途有限。应用数据同化技术,我们提出了一种贝叶斯更新方法,以使用可观察的信息来估算流行病学参数,以评估不同的干预策略的影响。我们采用简洁的续订模型,并通过将瞬时繁殖数RT的减少降低到缓解和抑制因子中,以量化更细的粒度影响,从而提出了新的参数。然后,我们开发了一个数据同化框架,用于估计这些参数,包括构建观察功能和开发贝叶斯更新方案。然后,建立一个统计分析框架,以通过监视这些估计参数的演变来量化干预策略的影响。通过调查欧洲国家,美国和武汉的干预措施的影响,我们揭示了这些国家的干预措施以及美国的复兴风险。
Epidemic models play a key role in understanding and responding to the emerging COVID-19 pandemic. Widely used compartmental models are static and are of limited use to evaluate intervention strategies with the emerging pandemic. Applying the technology of data assimilation, we propose a Bayesian updating approach for estimating epidemiological parameters using observable information for the purpose of assessing the impacts of different intervention strategies. We adopt a concise renewal model and propose new parameters by disentangling the reduction of instantaneous reproduction number Rt into mitigation and suppression factors for quantifying intervention impacts at a finer granularity. Then we developed a data assimilation framework for estimating these parameters including constructing an observation function and developing a Bayesian updating scheme. A statistical analysis framework is then built to quantify the impact of intervention strategies by monitoring the evolution of these estimated parameters. By Investigating the impacts of intervention measures of European countries, the United States and Wuhan with the framework, we reveal the effects of interventions in these countries and the resurgence risk in the USA.