论文标题

用量子机学习分类:调查

Classification with Quantum Machine Learning: A Survey

论文作者

Abohashima, Zainab, Elhosen, Mohamed, Houssein, Essam H., Mohamed, Waleed M.

论文摘要

由于量子计算的优越性和值得注意的进展(QC),例如加密,化学,大数据,机器学习,优化,物联网(IoT),区块链,通信等许多应用程序。完全旨在将古典机器学习(ML)与量子信息处理(QIP)结合起来,以在量子世界中构建一个新领域,称为量子机器学习(QML),以解决和改善经典机器学习中显示的问题(例如时间和能源消耗,内核估计)。本文的目的介绍了量子机学习(QML)的最先进进展的全面调查。特别是最近的QML分类作品。此外,我们介绍了最近在量子机学习(QML)上发表的大约30个出版物。我们在量子世界中提出了一个分类方案,并讨论了将经典数据映射到量子数据的编码方法。然后,我们提供量子子例程和一些量子计算方法(QC),以改善经典机器学习(ML)的性能和速度。还将提出各个领域,挑战和未来愿景中的一些QML应用程序。

Due to the superiority and noteworthy progress of Quantum Computing (QC) in a lot of applications such as cryptography, chemistry, Big data, machine learning, optimization, Internet of Things (IoT), Blockchain, communication, and many more. Fully towards to combine classical machine learning (ML) with Quantum Information Processing (QIP) to build a new field in the quantum world is called Quantum Machine Learning (QML) to solve and improve problems that displayed in classical machine learning (e.g. time and energy consumption, kernel estimation). The aim of this paper presents and summarizes a comprehensive survey of the state-of-the-art advances in Quantum Machine Learning (QML). Especially, recent QML classification works. Also, we cover about 30 publications that are published lately in Quantum Machine Learning (QML). we propose a classification scheme in the quantum world and discuss encoding methods for mapping classical data to quantum data. Then, we provide quantum subroutines and some methods of Quantum Computing (QC) in improving performance and speed up of classical Machine Learning (ML). And also some of QML applications in various fields, challenges, and future vision will be presented.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源