论文标题

Rosser的基本不可证实的定理足以有多少命题逻辑需要多少?

How Much Propositional Logic Suffices for Rosser's Essential Undecidability Theorem?

论文作者

Badia, Guillermo, Cintula, Petr, Hajek, Petr, Tedder, Andrew

论文摘要

在本文中,我们探讨了以下问题:对于弱算术理论而言,Rosser的基本不可证明的结果可能会造成较弱的逻辑?众所周知,鲁滨逊的Q在直觉逻辑上基本上是不可确定的,而P. Hajek在Grzegorczyk的Q变体的模糊逻辑BL中证明了它,该变体将算术操作解释为非交易的非功能性关系。我们提供了在弱化的下结构逻辑和弱算术理论(Robinson r的版本)中的基本不可证明的证明(算术操作也将其解释为仅仅是关系)。我们的结果是基于克莱恩(Kleene)引入的不可证明参数的结构版本,我们表明它远远超出了布尔,直觉或模糊逻辑的范围。

In this paper we explore the following question: how weak can a logic be for Rosser's essential undecidability result to be provable for a weak arithmetical theory? It is well known that Robinson's Q is essentially undecidable in intuitionistic logic, and P. Hajek proved it in the fuzzy logic BL for Grzegorczyk's variant of Q which interprets the arithmetic operations as non-total non-functional relations. We present a proof of essential undecidability in a much weaker substructural logic and for a much weaker arithmetic theory, a version of Robinson's R (with arithmetic operations also interpreted as mere relations). Our result is based on a structural version of the undecidability argument introduced by Kleene and we show that it goes well beyond the scope of the Boolean, intuitionistic, or fuzzy logic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源