论文标题

$ q $ - 具有($φ,γ$)的结构的元素结构

$q$-deformation with ($φ, Γ$) structure of the de Rham cohomology of the Legendre family of elliptic curves

论文作者

Shirai, Ryotaro

论文摘要

在60年代后期,B。DWORK研究了与经典的超小几何分化方程与参数$ \ left(\ frac {1} {2},\ frac {1} {2} {2}; 1 \ right)$兼容的Frobenius结构。最近,P。Scholze猜想了任何$ \ Mathbb {Z} $ - 方案的存在$ Q $ -DE RHAM共同学组。在本文中,我们给出了一个与$ q $ - hyphemementional方程与参数$(q^{\ frac12},q^{\ frac12}; q)兼容的frobenius结构。该结构提供了$(φ,γ)$ - 结构的$ q $ - $ \ MATHBB {Z} _p [[Q-1]] [[[Q-1]] [[[λ]] $ $ p $ - ad rham的共同体,具有Frobenius结构和连接。

In the late '60s, B. Dwork studied a Frobenius structure compatible with the classical hypergeometric differential equation with parameters $\left(\frac{1}{2},\frac{1}{2} ; 1 \right)$ by analyzing behavior of solutions of the differential equation under Frobenius transformation. Recently, P. Scholze conjectured the existence of $q$-de Rham cohomology groups for any $\mathbb{Z}$-scheme. In this paper, we give a Frobenius structure compatible with the $q$-hypergeometric differential equation with parameters $(q^{\frac12},q^{\frac12};q)$ by showing a $q$-analogue of some results of Dwork. This construction gives a $q$-deformation with $(φ,Γ)$-structure over $\mathbb{Z}_p[[q-1]][[λ]]$ of the de Rham cohomology of the $p$-adic Legendre family of elliptic curves which has Frobenius structure and connection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源