论文标题
逆景观遗传学的图形学习
Graph Learning for Inverse Landscape Genetics
论文作者
论文摘要
从图的节点上的数值数据中推断出未知的图形边缘的问题出现在机器学习中的许多形式中。我们研究了在\ emph {景观遗传学}领域中出现的这个问题的版本,其中通过加权图来解释生活在异质景观中的生物之间的遗传相似性,该图形编码了通过该景观的易于分散的易于分散的性。我们的主要贡献是\ emph {反向景观遗传学}的有效算法,这是从不同位置的遗传相似性测量值(图节点)中推断出该图的任务。反景观遗传学对于发现威胁生物多样性和长期物种生存的物种的障碍很重要。特别是,它被广泛用于研究气候变化和人类发展的影响。利用有影响力的工作,使生物体分散使用图\ emph {有效抗性}(McRae 2006),我们将逆景观遗传学问题减少到从这些电阻的噪声测量中推断出图边缘的逆向遗传学问题,这些电阻可以从遗传相似性数据中获得。建立在Hoskins等人的Neurips 2018工作的基础上。 2018年,关于社交网络中的学习边缘,我们开发了一种有效的一阶优化方法来解决此问题。尽管具有非凸性性质,但对合成和实际遗传数据的实验表明,我们的方法提供了快速可靠的收敛性,显着优于该领域中使用的现有启发式方法。通过为研究人员提供强大的通用算法工具,我们希望我们的工作将对加速景观遗传学的工作产生积极影响。
The problem of inferring unknown graph edges from numerical data at a graph's nodes appears in many forms across machine learning. We study a version of this problem that arises in the field of \emph{landscape genetics}, where genetic similarity between organisms living in a heterogeneous landscape is explained by a weighted graph that encodes the ease of dispersal through that landscape. Our main contribution is an efficient algorithm for \emph{inverse landscape genetics}, which is the task of inferring this graph from measurements of genetic similarity at different locations (graph nodes). Inverse landscape genetics is important in discovering impediments to species dispersal that threaten biodiversity and long-term species survival. In particular, it is widely used to study the effects of climate change and human development. Drawing on influential work that models organism dispersal using graph \emph{effective resistances} (McRae 2006), we reduce the inverse landscape genetics problem to that of inferring graph edges from noisy measurements of these resistances, which can be obtained from genetic similarity data. Building on the NeurIPS 2018 work of Hoskins et al. 2018 on learning edges in social networks, we develop an efficient first-order optimization method for solving this problem. Despite its non-convex nature, experiments on synthetic and real genetic data establish that our method provides fast and reliable convergence, significantly outperforming existing heuristics used in the field. By providing researchers with a powerful, general purpose algorithmic tool, we hope our work will have a positive impact on accelerating work on landscape genetics.